Sketching graph involve finding :
- domain
- x and y intercepts
- Asymptotes (for rational Functions)
- relative extremum , Critical Numbers, increasing or decreasing
- concavity(concave up/ concave down), Inflection Points
- Table
- Sketch the Graph
- Vertical Asymptotes
- Slant/oblique Aymptotes
- horizontal Asymptotes
if y = p(x)/q(x)
Vertical Asymptotes
to find vertical asymptotes, factorize p(x) and q(x) completely and let denominator equals to ZERO.
e.g : y = x^2 - x - 6 / x - 4
x - 4 = 0
x= 4, vertical Asymptotes.
Slant / Oblique Aymptotes
If degree of p(x) > degree of q(x) by 1, there is an oblique asymptotes.
use LONG DIVISION.
e.g : y = x^2 + 1/ x- 1
x + 1
x-1 | x^2 + 1
- ( x - x )
x + 1
x + 1
0
Horizontal Asymptotes
- If degree of P(x) < degree of Q(x), HORIZONTAL Asymptotes is y=0.
- If degree of P(x) = degree of Q(x), horizontal Asymptotes
e.g : y = 2x^2 + 3 / 5x^2 +4
horizontal Asymptotes = 2/5 .
0 comments:
Post a Comment